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The problem of vibration of thin plates has long been a subject 

of interest and study, primarily for isotropic and homogeneous materials. 

The documented experimental study of the vibration of plates began with 

Chladni in 1787. 

the surface of a vibrating plate, the positions of the nodal lines were 

determined. When the plate was set into vibration, the sand grains 

gradually migrated to the regions of minimum motion, revealing the 

nodal patterns. 

By the simple procedure of sprinkling fine sand on 

More recently Waller [l] investigated the vibration of free circular 

and square isotropic plates. 

of normal and compounded modes, measured frequencies and photographically 

recorded many nodal patterns. 

denoting a pure resonant mode of the structure. 

the combination of two or more normal modes of equal or nearly equal 

frequency, occurring simultaneously due to effects of damping in the 

material or nonuniformities of the structure. In the study of nodal 

patterns, Grinsted [2] used the principle of compounded mode 

classification, first explored by Waller, to analyze blade structures 

in impellers and turbines. He demonstrated that for geometrically 

nonsymmetric plates irregular mode patterns can be resolved as 

emanating from consistent series of simpler modes, the frequencies of 

which cap be plotted as families of curves. The construction 

of the nodal patterns is accomplished via a graphical procedure based 

on the number of nodal lines in "normal" modes. (Grinsted [ 2 ]  used 

She presented a detailed classification 

A normal mode is the usual designation 

A compounded mode is 
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the phrase"nonna1 modes" to denote resonant modes in which the nodal lines 

were parallel to the edges of the plate. Per the definition above, this 

is a nonstandard use of the phrase "normal modes".) The composition was 

especially valuable for geometrically nonsymmetric shapes. 

The results obtained by Grinsted were confirmed theoretically by 

Warburton [ 4 ]  who derived a simple approximate frequency expression for the 7 

modes of vibration of rectangular plates having various boundary conditions. 

Mode shapes similar to those in beams were assumed. The resulting 

frequency equation was dependent on the plate nodal patterns, dimensions, 

material and boundary conditions. 

Hearmon [5] conducted vibration analyses for anisotropic plates, 

deriving expressions for the frequency of rectangular laminated plates. 

Theoretical and experimental results were compared for wood and plywood 

plates. 

With the development of finite element techniques, a new approach 

was introduced for the determination of the vibrational characteristics of 

isotropic and anisotropic plates. Studies of correlations between 

classical theoretical methods, experimentation and finite element methods 

can be found in the studies of Thornton and Clary [6,7] for thin plates 

and by Bert [8] for thick composite plates. 

The purpose of this work is to investigate the natural modes of 

transverse vibration of a thick anisotropic square plate by the 

experimental measurement of its nodal patterns. For the vibrational 

analysis of thick anisotropic plates, experimental and finite element 

methods seem to be the only currently viable approaches. For this 

study an experimental method [ 9 ]  is used. The specimen is excited 
I 
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a t  its  resonant frequencies and the nodal l ines  are measured. Note that 

a specif ic  specimen i s  tested, thus th is  is not a general treatment on the 

subject of anisotropic plates.  Nevertheless, these results are expected 

to be very useful in subsequent acoustic emission and ultrasonic non- 

destructive evaluation studies. 
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TEST SPECIMEN, EQUIPMENT AND EXPERIMENTAL PROCEDURES 

Test Specimen 

The test specimen was a square plate with 27.94 cm (11 in) sides 

and 2.54 cm (1 in) thickness of Scotchply 1002 unidirectional fiber- 

glass epoxy composite. The plate was set on a 2.54 cm (1 in) thick, 

30 x 30 cm (11.81 x 11.81 in) square soft (estimated stiffness of 

15 N/cm) rubber base for support and insulation. 

Equipment 

A schematic of the experimental system is shown in Fig. 1. The equip- 

ment for the measurement of the nodal patterns and the output voltage 

amplitude of the receiving transducer included a signal generator (Tektronics 

Model FG 501); an oscilloscope (Tektronics Type 502 A dual-beam); a digital 

frequency counter (Hewlett Packard Model 5381 A 80 MHz); a source trans- 

ducer (Acoustic Emission Technology Model FC-500 longitudinal type); a 

receiving transducer (Panametrics Model V109 longitudinal type); and a 

transducer-specimen interface couplant (AET SC-6 for longitudinal waves). 

Procedures for Measurement of Nodal Patterns 

The nodal patterns were measured by the following procedure. For 

spatial reference, a grid of 2.54 cm (1 in) squares was drawn on the 

top of the plate starting from the center. The top of the plate was 

then covered with a thin layer of couplant (estimated thickness of 

0.0005 cm). 

grid and pressed against the plate for better adherence. 

The source transducer was positioned at the center of the 

To avoid 
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dZ?llage n f  t he  s~rf=P-P_, adhesive was uspd_, The rece iv ing  t ransducer  

w a s  placed as c l o s e  as poss ib le  t o  t h e  t r ansmi t t i ng  t ransducer  without 

touching it .  The s i g n a l  generator  w a s  set t o  produce an 80 V peak-to- 

peak s inuso ida l  s i g n a l  t o  the source  t ransducer .  The s i g n a l  genera tor  

w a s  tuned i n i t i a l l y  a t  1 kHz and t h e  frequency w a s  slowly increased ,  

as t h e  osc i l l o scope  w a s  observed. For each m a x i m u m  amplitude a t  t h e  

f ixed  rece iv ing  po in t ,  t h e  frequency w a s  recorded. The f requencies  so 

obtained corresponded t o  t h e  resonant f requencies  of t h e  p l a t e  and are 

l i s t e d  i n  Table 1. The range of f requencies  obtained w a s  l i m i t e d  by 

t h e  a t t enua t ion  of t h e  specimen material and t h e  diameter of t h e  r ece iv ing  

t ransducer .  

Beginning from t h e  lowest observable  resonant  frequency, t h e  

genera tor  w a s  aga in  tuned and t h e  output  of t h e  rece iv ing  t ransducer  

displayed on t h e  osc i l loscope  w a s  ad jus t ed  such t h a t  a peak of t he  

s inusoid  w a s  cen tered  on the  ver t ical  c e n t e r l i n e  of  t h e  screen.  For 

t h i s  p o s i t i o n ,  a p o s i t i v e  phase w a s  a r b i t r a r i l y  ass igned.  The rece iv ing  

t ransducer  w a s  then slowly moved ac ross  t h e  s u r f a c e  and t h e  v a r i a t i o n s  

on t h e  osc i l l o scope  observed. I f  a trough of  t h e  s inusoid  s h i f t e d  t o  

t h e  cen te r  of t h e  screen,  a change of phase w a s  marked on a ske tch  of 

t he  g r i d .  Each phase change, from p o s i t i v e  t o  nega t ive  o r  vice versa, 

ind ica t ed  t h a t  a nodal l i n e  w a s  crossed.  The complete scanning of t h e  

s u r f a c e  ind ica ted  a l l  poin ts  of phase change. These p o i n t s  were 

connected by smooth curves,  r e s u l t i n g  i n  a nodal  l i n e s  sketch.  

The process  w a s  repeated f o r  a l l  no t i ceab le  resonant  f requencies  

u n t i l  t h e  d i s t a m e  between the nodal l i n e s  w a s  comparable t o  t h e  

diameter  of t h e  rece iv ing  t ransducer  f ace .  A t  t h a t  p o i n t ,  t h e  p o s i t i o n  
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of t h e  changes of phase were so c l o s e  t h a t  i nd iv idua l  nodal  l i n e s  

could b e  missed. By t h i s  l i m i t a t i o n ,  t h e  nodal  p a t t e r n s  could be 

determined only f o r  f requencies  up t o  21.73 kHz. 

shown on Figs .  2 through 13. 

These p a t t e r n s  are 

The resonant measurements were repeated f o r  o t h e r  support ing 

condi t ions of t h e  p l a t e .  

of cubic shape (1.27 c m  s i d e s )  a t  t h e  corners .  The suppor ts  were c u t  

from the same material used f o r  t h e  o r i g i n a l  base.  These resonant  

f requencies  and t h e  nodal  p a t t e r n s  w e r e  almost t h e  same as those  found 

before .  Examples are shown i n  Figs .  1 4 ,  15 and 16 where t h e  corresponding 

earlier resonant modes are shown i n  Figs.  2 ,  3 and 4 ,  r e spec t ive ly .  Thus, 

i t  appears t h a t  t h e  supports  used had very l i t t l e  in f luence  on t h e  

resonant behavior of t h e  p l a t e ,  i n d i c a t i n g  t h a t  t h e  p l a t e  can be  

considered as a f r e e l y  suspended body. This  would not  be t r u e  i f  t h e  

mater ia l  of t h e  base possessed a s t i f f n e s s  comparable t o  t h e  p l a t e  

i t s e l f .  

The o r i g i n a l  base w a s  replaced by fou r  suppor ts  
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RESULTS -- 

The nodal p a t t e r n s  obtained a t  t h e  f requencies  l i s t e d  i n  Table 1 

are shown i n  Figs. 2 through 13, i n  order  of i nc reas ing  frequency. The 

heavy l i n e s  on t h e  p l a t e  top f a c e  r ep resen t  t h e  nodal l i n e s .  

t h a t  a l l  nodal p a t t e r n s  are symmetrical, a t  least about one axis. 

i n  genera l ,  t h e  number of nodal l i n e s  inc reases  wi th  increas ing  

frequency, r e s u l t i n g  i n  a smaller nodal l i n e  spacing. 

Note 

Also, 

The f i r s t  nodal p a t t e r n  obtained ( see  Fig. 21, corresponding t o  

t h e  f i r s t  observable  resonant frequency, shows fou r  l i n e s  running more 

o r  less para l le l  t o  t h e  f i b e r  d i r e c t i o n .  As t h e  smallest e las t ic  

modulus occurs i n  the  d i r e c t i o n  perpendicular  t o  t h e  f i b e r s ,  i t  is  

expected t h a t  t h e  p l a t e  w i l l  bend i n  t h a t  d i r e c t i o n  a t  lower f requencies ,  

compared wi th  t h e  f i b e r  d i r ec t ion .  

frequency expression [SI. 

This i s  confirmed by Hearmon's 

By t h e  mode c l a s s i f i c a t i o n  f o r  square p l a t e s  discussed i n  [1,31, 

l i n e s  running p a r a l l e l  t o  the p l a t e  edges i n d i c a t e  t h e  p l a t e  v i b r a t e s  

approximately as a beam. 

t h e  c l o s e r  t h e  modal behavior is t o  t h e  behavior  of t h e  beam. This 

type of p a t t e r n  can be observed i n  Figs. 2 and 4. 

The more these l i n e s  approach s t r a i g h t  l i n e s ,  
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CONCLUSIONS 

The nodal p a t t e r n s  a r e  an important a u x i l i a r y  set of information 

i n  t h e  design of u l t r a s o n i c  and a c o u s t i c  emission experiments. 

such NDE tests are to  be performed, t h e  resonant f requencies  and t h e  

corresponding nodal p a t t e r n s  of t h e  specimens should be w e l l  cha rac t e r i zed  

wi th in  t h e  frequency range t o  be t h e  s tud ied .  Af t e r  t h e  resonances 

and mode shapes have been determined, a dec i s ion  should be made as t o  whether 

t h e  resonant f requencies  should be avoided o r  sought during a test. 

the  frequency content  of t h e  generated s i g n a l  i s  known t o  i nc lude  

resonant tones,  t h e  nodal p a t t e r n  i n d i c a t e s  t h e  p o s i t i o n s  of vanishing 

displacement amplitudes corresponding t o  these  resonant tones.  

I f  

I f  

The f i b e r g l a s s  epoxy t e s t e d  he re  requi red  a high peak-to-peak input  

vo l t age  f o r  t h e  determinat ion of nodal  pa t e rns  because t h e  a t t e n u a t i o n  

of t h e  material is high. S imi la r  tests on an aluminum block [9] of 

comparable dimensions required much less input  vo l t age  f o r  an adequate 

output l e v e l  a t  t h e  rece iv ing  t ransducer  (about one - f i f th  of t h e  

vo l t age  required f o r  t h e s e  t e s t s ) .  

The presence of s i m i l a r  mode shapes with l i n e s  approximately 

p a r a l l e l  along t h e  p r i n c j p a l  d i r e c t i o n s  sugges ts  t h a t  some composition 

cons t ruc t ion  can be done using a technique s i m i l a r  t o  Gr ins t ed ' s  

g raph ica l  cons t ruc t ion  f o r  i s o t r o p i c  m a t e r i a l s .  

material, however, t h e  d i f f e rences  i n  t h e  elastic p r o p e r t i e s  a long 

t h e  p r i n c i p a l  axes in t roduce ,  as y e t  undetermined, complexity t o  t h i s  

process.  

For t h e  a n i s o t r o p i c  
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TABLE 1 Experimental resonant frequencies f o r  unidirectional 
fiberglass epoxy plate. 

Resonant 

Frequencies (IrHz) 

3.585 

4.676 

5.745 

6.640 

7.259 

8.426 

9.610 

11.999 

13.820 

16.510 

18.520 
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Pig. 1 Schematic of experimental system f o r  measurement of 
noda l  patterns. 
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Fiber Oirec t ion I 

Fig. 2 Nodal pattern measured at resonant frequency of 
3.585 kHz (top view). 
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Fiber Oirec t ion f 

F i g .  3 Nodal pattern measurement at resonant frequency of 
4.767 kHz (top view). 
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Fiber Direct ion t 
I 

P i g .  4 Nodal pattern measured at resonant frequency of 
5.745 kHz (top view). 
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Fiber Direction t 

F i g .  5 Nodal pattern measured at resonant frequency of 
6 .640  U z  (top view). 
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Fiber Direction 1 

Fig. 6 Nodal pattern measured at resonant frequency of 
7.258 kHz ( t o p  view). 
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Fiber Direction I 

Fig.  7 Nodal pattern measured at resonant frequency of 8 . 4 2 6  kHz 
(top view). 

-17- 



Fiber 0 irec t ion i 

F i g .  8 Nodal pattern measured at resonant frequency of 9.610 kHz 
(top view). 
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Fiber Direction t 

k 1 

Fig. 9 Nodal pattern measured at resonant frequency of 11.999 kHz 
(top view). 
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Fiber Direct ion 1 

F i g .  10 Nodal pattern measured at resonant frequency of 13.820 kHz 
(top view). 
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Fiber Direct ion t 

F i g .  11 Nodal pattern measured at resonant frequency of 16.510 kHz 
(top view). 
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Fiber 0 irection I 

F ig .  12 Nodal pattern measured at resonant frequency of 18.520 kHz 
(top view). 
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Fi be? Direction I 

Fig. 13 Nodal pattern measured at resonant frequency of 21.73 lcHz 
(top view). 
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Fiber Direction t 

Fig .  14 Nodal pattern measured at resonant frequency of 3.550 kHz 
f o r  support at four corners (top view). 
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Fig. 15 

Fiber Direct ion 1 

Nodal pattern measured at resonant frequency of 4.721 ldIz 
for support at four corners (top view). 
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F i ber Direct ion 1 

F i g .  16 Nodal pattern measured at resonant frequency of 5.766 kHz 
for support at four corners (top v i e w ) .  
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